Oct. 2001, Accessed: Jul. 30, 2014. [Online]. Available: http://www.ncbi.nlm.nih.
gov/pubmed/11536142.
[84] J. M. Young, C. Cheadle, J. S. Foulke, W. N. Drohan, and N. Sarver, “Utilization of
an Epstein-Barr virus replicon as a eukaryotic expression vector,” Gene, vol. 62,
pp. 171–185, 1988, doi: 10.1016/0378-1119(88)90556-2
[85] J. Ye, V. Kober, M. Tellers, Z. Naji, P. Salmon, and J. F. Markusen, “High-level
protein expression in scalable CHO transient transfection,” Biotechnol. Bioeng.,
vol. 103, pp. 542–551, 2009, doi: 10.1002/bit.22265
[86] H. Rodrigues Goulart, F. Dos, S. Arthuso, M. V. N. Capone, T. L. de Oliveira, P.
Bartolini, and C. R. J. Soares, “Enhancement of human prolactin synthesis by so-
dium butyrate addition to serum-free CHO cell culture,” J. Biomed. Biotechnol.,
vol. 2010, p. 405872, Jan. 2010, doi: 10.1155/2010/405872
[87] R. Damiani, B. E. Almeida, J. E. Oliveira, P. Bartolini, and M. T. C. P. Ribela,
“Enhancement of human thyrotropin synthesis by sodium butyrate addition to
serum-free CHO cell culture,” Appl. Biochem. Biotechnol., vol. 171, no. 7,
pp. 1658–1672, Dec. 2013, doi: 10.1007/s12010-013-0467-9
[88] Y. H. Sung, Y. J. Song, S. W. Lim, J. Y. Chung, and G. M. Lee, “Effect of sodium
butyrate on the production, heterogeneity and biological activity of human throm-
bopoietin by recombinant Chinese hamster ovary cells,” J. Biotechnol., vol. 112,
pp. 323–335, 2004, doi: 10.1016/j.jbiotec.2004.05.003
[89] Y. Mimura et al., “Butyrate increases production of human chimeric IgG in CHO-
K1 cells whilst maintaining function and glycoform profile,” J. Immunol. Methods,
vol. 247, pp. 205–216, 2001, doi: 10.1016/S0022-1759(00)00308-2
[90] G. Backliwal, M. Hildinger, I. Kuettel, F. Delegrange, D. L. Hacker, and F. M. Wurm,
“Valproic acid: A viable alternative to sodium butyrate for enhancing protein ex-
pression in Mammalian cell cultures,” Biotechnology, vol. 101, pp. 182–189, 2008,
doi: 10.1002/bit.21882
[91] D. P. Palermo, M. E. DeGraaf, K. R. Marotti, E. Rehberg, and L. E. Post,
“Production of analytical quantities of recombinant proteins in Chinese hamster
ovary cells using sodium butyrate to elevate gene expression,” J. Biotechnol.,
vol. 19, pp. 35–47, 1991, doi: 10.1016/0168-1656(91)90073-5
[92] S. Ansorge, S. Lanthier, J. Transfiguracion, Y. Durocher, O. Henry, and A. Kamen,
“Development of a scalable process for high-yield lentiviral vector production by
transient transfection of HEK293 suspension cultures,” J. Gene Med., vol. 11,
pp. 868–876, 2009, doi: 10.1002/jgm.1370
[93] Z. Jiang and S. T. Sharfstein, “Sodium butyrate stimulates monoclonal antibody
over-expression in CHO cells by improving gene accessibility,” Biotechnol.
Bioeng., vol. 100, pp. 189–194, 2008, doi: 10.1002/bit.21726
[94] S. Wulhfard, L. Baldi, D. L. Hacker, and F. Wurm, “Valproic acid enhances re-
combinant mRNA and protein levels in transiently transfected Chinese hamster ovary
cells,” J. Biotechnol., vol. 148, pp. 128–132, 2010, doi: 10.1016/j.jbiotec.2010.05.003
[95] G. Backliwal, M. Hildinger, S. Chenuet, M. DeJesus, and F. M. Wurm,
“Coexpression of acidic fibroblast growth factor enhances specific productivity and
antibody titers in transiently transfected HEK293 cells,” N. Biotechnol., vol. 25,
pp. 162–166, 2008, doi: 10.1016/j.nbt.2008.08.007
[96] G. Backliwal, M. Hildinger, S. Chenuet, S. Wulhfard, M. De Jesus, and F. M.
Wurm, “Rational vector design and multi-pathway modulation of HEK 293E cells
yield recombinant antibody titers exceeding 1 g/l by transient transfection under
serum-free conditions,” Nucleic Acids Res., vol. 36, no. 15, p. e96, Sep. 2008, doi:
10.1093/nar/gkn423
[97] S. Fan et al., “Valproic acid enhances gene expression from viral gene transfer vectors,”
J. Virol. Methods, vol. 125, pp. 23–33, 2005, doi: 10.1016/j.jviromet.2004.11.023
Recombinant vaccines: Gag-based VLPs
265